
Pagrindiniai algoritmai dirbant su sveikųjų ir realiųjų skaičių masyvų reikšmėmis

Sumos skaičiavimo algoritmas

Sveikieji skaičiai Realieji skaičiai

int Suma (int X[], int n){

 int s = 0;

 for (int i = 0; i < n; i++)

 s = s + X[i];

 return s;

}

double Suma (double X[], int n){

 double s = 0;

 for (int i = 0; i < n; i++)

 s = s + X[i];

 return s;

}

Kiekio skaičiavimo algoritmas (grąžina, kiek teigiamų reikšmių yra masyve)

Sveikieji skaičiai Realieji skaičiai

int Kiekis (int X[], int n){

 int k = 0;

 for (int i = 0; i < n; i++)

 if (X[i] > 0) k++;

 return k;

}

int Kiekis (double X[], int n){

 int k = 0;

 for (int i = 0; i < n; i++)

 if (X[i] > 0) k++;

 return k;

}

Didžiausios masyvo reikšmės vieta masyve

Sveikieji skaičiai Realieji skaičiai

int Didziausia (int X[], int n){

 int m = 0;

 for (int i = 0; i < n; i++)

 if (X[i] > X[m]) m = i;

 return m;

}

int Didziausia (double X[], int n){

 int m = 0;

 for (int i = 0; i < n; i++)

 if (X[i] > X[m]) m = i;

 return m;

}

Mažiausios masyvo reikšmės vieta masyve

Sveikieji skaičiai Realieji skaičiai

int Maziausia (int X[], int n){

 int m = 0;

 for (int i = 0; i < n; i++)

 if (X[i] < X[m]) m = i;

 return m;

}

int Maziausia (double X[], int n){

 int m = 0;

 for (int i = 0; i < n; i++)

 if (X[i] < X[m]) m = i;

 return m;

}

Reikšmės šalinimo algoritmas

Sveikieji skaičiai Realieji skaičiai

void Salinimas (int X[], int & n,

 int k)

{

 for (int i = k; i < n; i++)

 if X[i] = X[i + 1];

 n--;

}

void Salinimas (double X[], int & n,

 int k)

{

 for (int i = k; i < n; i++)

 if X[i] = X[i + 1];

 n--;

}

Reikšmės įterpimo algoritmas

Sveikieji skaičiai Realieji skaičiai

void Iterpimas (int X[], int & n,

 int k, int koks)

{

 for (int i = n; i > k; i--)

 X[i] = X[i - 1];

 n++;

 X[k] = koks;

}

void Iterpimas (double X[], int & n,

 int k, double koks)

{

 for (int i = n; i > k; i--)

 X[i] = X[i - 1];

 n++;

 X[k] = koks;

}

Rikiavimo algoritmas

Sveikieji skaičiai Realieji skaičiai

void Rikiavimas(int X[], int n){

 int m; int sukeitimas;

 for (int i = 0; i < n - 1; i++)

 {

 m = i;

 for (int j = i + 1; j < n; j++)

 if (X[j] > X[m]) m = j;

 sukeitimas = X[i]; X[i] = X[m];

 X[m] = sukeitimas;

 }

}

void Rikiavimas(double X[], int n){

 int m; double sukeitimas;

 for (int i = 0; i < n - 1; i++)

 {

 m = i;

 for (int j = i + 1; j < n; j++)

 if (X[j] > X[m]) m = j;

 sukeitimas = X[i]; X[i] = X[m];

 X[m] = sukeitimas;

 }

}

Struktūrų masyvai. Pagrindiniai algoritmai

Struktūra:

struct Mokinys {

 string vardas;

 int amzius;

 int ugis;

 int pinigai;

};

1. Sumos skaičiavimas: kiek pinigų turi visi mokiniai

int Suma (Mokinys M[], int n) {

 int s = 0;

 for (int i = 0; i < n; i++)

 s = s + M[i].pinigai;

 return s;

}

2. Vidurkio skaičiavimas: koks vidutinis mokinio ūgis

double Vidurkis (Mokinys M[], int n) {

 double v = 0;

 for (int i = 0; i < n; i++)

 v = v + M[i].ugis;

 return (double) v / n;

}

3. Kiekio skaičiavimas: kiek yra mokinių, kurių amžius ne didesnis už 15 metų:

int Keli (Mokinys M[], int n) {

 int k = 0;

 for (int i = 0; i < n; i++)

 if (M[i].amzius <= 15) k++;

 return k;

}

4. Mažiausios reikšmės vietos paieška: kuris mokinys yra jauniausias
Įsidėmėkite: grąžinamas masyvo indeksas!!!!

int Jauniausias (Mokinys M[], int n) {

 int m = 0;

 for (int i = 0; i < n; i++)

 if (M[m].amzius < M[i].amzius) m = i;

 return m;

}

5. Didžiausios reikšmės vietos paieška: kuris mokinys yra aukščiausias
Įsidėmėkite: grąžinamas masyvo indeksas!!!!

int Auksciausias (Mokinys M[], int n) {

 int m = 0;

 for (int i = 0; i < n; i++)

 if (M[m].ugis > M[i].ugis) m = i;

 return m;

}

6. Elemento šalinimas iš struktūrų masyvo: k-tojo mokinio šalinimas

void Salinimas (Mokinys M[], int & n, int k) {

 for (int i = k; i < n; i++)

 M[i] = M[i + 1];

 n--;

}

7. Elemento įterpimas į struktūrų masyvą: į k-tąją vietą įterpti naują mokinį naujas

void Ierpimas (Mokinys M[], int & n, int k, Mokinys naujas) {

 for (int i = n; i > k; i--)

 M[i] = M[i - 1];

 n++;

 M[k] = naujas;

}

8. Struktūrų masyvo elementų rikiavimas: surikiuoti mokinius pagal ūgį didėjimo

kryptimi, jei ūgiai sutampa, tuomet pagal abėcėlę nuo A iki Z

void Rikiavimas(Mokinys M[], int n){

 int m; Mokinys sukeitimas;

 for (int i = 0; i < n - 1; i++) {

 m = i;

 for (int j = i + 1; j < n; j++)

 if ((X[j].ugis > X[m].ugis) ||

 ((X[j].ugis == X[m].ugis) &&

 (X[j].vardas < X[m].vardas))) m = j;

 sukeitimas = X[i]; X[i] = X[m]; X[m] = sukeitimas;

 }

}

arba naudojant swap:

void Rikiavimas(Mokinys M[], int n){

 int m;

 for (int i = 0; i < n - 1; i++) {

 m = i;

 for (int j = i + 1; j < n; j++)

 if ((X[j].ugis > X[m].ugis) ||

 ((X[j].ugis == X[m].ugis) &&

 (X[j].vardas < X[m].vardas))) m = j;

 swap(M[i], M[m]);

 }

}

