Pagrindiniai algoritmai dirbant su sveikyjy ir realiyjy skai€¢iy masyvy reikSmémis

Sumos skaiciavimo algoritmas

Sveikieji skaiciai

Realieji skaiciai

int Suma (int X[], int n) {
int s = 0;
for (int 1 = 0; 1 < n; 1i++)
s = s + X[1i];

return s;

double Suma (double X[], int n){
double s = 0;
for (int 1 = 0; 1 < n; i++)
s = s + X[1i];

return s;

Kiekio skaiciavimo algoritmas (grazina, kiek teigiamy reikSmiy yra masyve)

Sveikieji skaiciai

Realieji skaiciai

int Kiekis (int X[], int n){
int k = 0;
for (int 1 = 0; 1 < n; 1i++)
if (X[1] > 0) k++;

return k;

int Kiekis (double X[], int n) {
int k = 0;
for (int 1 = 0; 1 < n; i++)
if (X[1] > 0) k++;

return k;

DidZiausios masyvo reiksSmés vieta masyve

Sveikieji skaiciai

Realieji skaiciai

int Didziausia (int X[], int n){
int m = 0;
for (int i = 0; 1 < n; i++)
if (X[1i] > X[m]) m = 1i;

return m;

int Didziausia (double X[], int n) {
int m = 0;
for (int i = 0; 1 < n; i++)
if (X[1] > X[m]) m = 1i;

return m;

MazZiausios masyvo reikSmés vieta masyve

Sveikieji skaiciai

Realieji skaiciai

int Maziausia (int X[], 1int n){ int Maziausia (double X[], int n) {
int m = 0; int m = 0;
for (int 1 = 0; 1 < n; 1i++) for (int 1 = 0; 1 < n; i++)
if (X[1i] < X[m]) m = 1i; if (X[i] < X[m]) m = 1i;
return m; return m;
} }
Reiksmeés Salinimo algoritmas
Sveikieji skaiciai Realieji skaiciai
void Salinimas (int X[], int & n, void Salinimas (double X[], int & n,
int k) int k)
{ {
for (int 1 = k; 1 < n; 1i++) for (int 1 = k; 1 < n; i++)
X[i] = X[1 + 11; X[i] = X[1 + 11,
n--; n--;
} }
Reiks§meés jterpimo algoritmas
Sveikieji skaiciai Realieji skaiciai
void Iterpimas (int X[], int & n, void Iterpimas (double X[], int & n,
int k, int koks) int k, double koks)
{ {
for (int i = n; 1 > k; i--) for (int 1 = n; 1 > k; 1i--)
X[i] = X[1 - 1]; X[i] = X[1 - 11;
n++; n++;
X[k] = koks; X[k] = koks;

Rikiavimo algoritmas

Sveikieji skaiciai

Realieji skaiciai

void Rikiavimas (int X[], int n) {

int m; int sukeitimas;

for

{

(int 1 = 0; i < n - 1; i++)

m = 1i;
for (int j =i + 1;
(X131

sukeitimas =

if > X[m]) m =

X[m] = sukeitimas;

void Rikiavimas (double X[],

int m;
for (int

{

double sukeitimas;

i=0; 1 <n-1;

m = i;

for

if

sukeitimas =

X [m]

(int §J = 1 + 1;

(X[3] > X[m]) m = 3j;

= sukeitimas;

int n) {

i++)

Struktiiry masyvai. Pagrindiniai algoritmai

Struktira:

struct Mokinys {
string vardas;
int amzius;
int ugis;
int pinigai;

1. Sumos skaiciavimas: kiek pinigy turi visi mokiniai

int Suma (Mokinys M[], int n) {
int s = 0;
for (int 1 = 0; i < n; 1i++)
s = s + M[i].pinigai;
return s;

2. Vidurkio skai¢iavimas: koks vidutinis mokinio tgis

double Vidurkis (Mokinys M[], int n) {
double v = 0;
for (int i = 0; i < n; 1i++)
v = v + M[i].ugis;
return (double) v / n;

3. Kiekio skaifiavimas: kiek yra mokiniy, kuriy amzZius ne didesnis uz 15 mety:

int Keli (Mokinys M[], int n) {
int k = 0;
for (int i = 0; i < n; 1i++)
if (M[i].amzius <= 15) k++;
return k;

}

4. Maziausios reikSmeés vietos paieska: kuris mokinys yra jauniausias
Isidémekite: graZinamas masyvo indeksas!!!!

int Jauniausias (Mokinys M[], int n) {

int m = 0;
for (int 1 = 0; i < n; 1i++)
if (M[m].amzius < M[i].amzius) m = i;

return m;

5. Didziausios reik§mes vietos paieska: kuris mokinys yra auks¢iausias
Isidémeékite: graZinamas masyvo indeksas!!!!

int Auksciausias (Mokinys M[], int n) {
int m = 0;
for (int 1 = 0; i < n; 1i++)
if (M[m].ugis > M[i].ugis) m = i;
return m;

6. Elemento $alinimas i§ struktiiry masyvo: k-tojo mokinio $alinimas

void Salinimas (Mokinys M[], int & n, int k) {
for (int 1 = k; 1 < n; 1++)
M[i] = M[1 + 1];
n--;

7. Elemento jterpimas j struktiiry masyva: j k-taja vietg jterpti nauja mokinj naujas

void Ierpimas (Mokinys M[], int & n, int k, Mokinys naujas) {
for (1nt i =n; 1 > k; i--)
M[1i] M[i - 1];
n++;
M[k] = naujas;

8. Struktﬁrq masyvo elementy rikiavimas: surikiuoti mokinius pagal ugj didéjimo

void Rikiavimas (Mokinys M[], int n) {
int m; Mokinys sukeitimas;
for (int 1 = 0; 1 < n - 1; 1i++) {

m = i;
for (int j =1 + 1; jJ < n; J++)
if ((X[j].ugis > X[m].ugis) ||
((X[J].ugis == [m] .ugis) &&
(X[j].vardas < X[m].vardas))) m = j;
sukeitimas = X[1i]; X[1i] = X[m]; X[m] = sukeitimas;

arba naudojant swap:

void Rikiavimas (Mokinys M[], int n) {

int m;
for (int 1 = 0; 1 < n - 1; i++) {
m = 1i;
for (int j =1 + 1; j < n; J++)
if ((X[Jj].ugis > X[m].ugis) ||
((X[Jj].ugis == X[m].ugis) &&
(X[j].vardas < X[m].vardas)))
swap (M[1i], M[m]);

m

37

